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Probabilistic Fault Identi� cation Using a Committee
of Neural Networks and Vibration Data
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Bayesian-formulatedneural network architecture is implemented using a hybrid Monte Carlo method for prob-
abilistic fault identi� cation in a population of ten nominally identical cylindrical shells using vibration data. Each
cylinder is divided into three substructures. Holes of 12 mm in diameter are introduced in each of the substructures.
Vibrationdata are measured by impactingthe cylinders at selected positionsusing a modalhammer and measuring
the acceleration responses at a � xed position. Modal energies, de� ned as the integrals of the real and imaginary
components of the frequency response function over 12-Hz frequency bandwidths, are extracted and transformed
into the coordinate modal energy assurance criterion. This criterion and the identity of faults are used to train the
frequency response function (FRF) neural network. Modal analysis is then employed to identify modal properties.
Mode shapes are transformed into the coordinate modal assurance criterion. The natural frequencies and the
coordinate modal assurance criterion, as well as the identities of faults, are utilized to train the modal-property
neural network. The weighted average of the modal-property network and the FRF network form a committee
of two networks. The committee approach is observed to give lower mean square errors and standard deviations
(thus, a higherprobabilityof givingthe correct solution) than the individualmethods.This approachgives accurate
identities of damage and their respective con� dence intervals while requiring affordable computational resources.

Nomenclature
[C] = damping matrix
D = matrix containing identity of damage data
ED; EW = error functions
F.w/ = integrand
f . ¢ /; f f g = activation function of ¢ and force vector,

respectively
h. ¢ / = mapping function of ¢
j =

p
.¡1/

[K ] = stiffness matrix
[M ] = mass matrix
N = identi� ed modal energy
p.D j w/ = likelihood function
p.w j D/ = posterior probability distribution
p.w j x/ = probability distribution function of the

weight space
p.y j x; w/ = distribution of the noise on y
T = temperature in simulated annealing
W = number of weights
w j0; wk0 = bias parameters
fX g = displacementvector
fxg; [x] = vector and matrix, respectively, of modal

properties or modal energies
y; yi = identity of damage vector (i th vector)
® = coef� cient of prior probability distribution
¯ = hyperparameter
´ = data from modal energies
fÁng; fÁng = nth natural mode shape vector, complex mode

shape vector
Â = modal properties
N!n; ! = nth complex eigenvalue and frequency,

respectively

Subscripts

i; j = indices
m = measured
med = median
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Superscripts

N = number of modes
M = number of hidden layers
? = the complex conjugate

I. Introduction

T HE identi� cation of faults in aerospacestructures at the manu-
facturing stage offers substantial economic bene� ts. Vibration

methods have been implemented with varying degrees of success
on identifying mechanical faults.1 These techniquescan be broadly
classi� ed as being experimentally based or model based.

Experimental methods use experimental data as a basis of fault
identi� cation. These methods use changes in vibrationdata with lit-
tle or no assumptions about the analytical behavior of the structure
for fault identi� cation. The main shortcoming with these methods
is that they are usually insensitive to faults of small magnitude and
experience dif� culty on quantifying the severity of faults. The ad-
vantageof these methods is that they are not computationallyinten-
sive. Model-based techniques modify a numerical model (such as
� nite element model) to match measured vibration data as a basis
for fault identi� cation.2 These methods are, in principle, capable of
identifyingfaults,but theyrelyon the accuracyof numericalmodels.

In this study, the committee3 of neural networks, which employs
frequencyresponse functions (FRFs) and modal propertiessimulta-
neously is extended to a probabilistic framework and is experimen-
tally validated. Two Bayesian-formulatedneural networks, trained
using FRFs and modal properties, are weight averaged and used to
identify faults in a population of cylindrical shells. The committee
approachhas been found to give more reliablesolutionsthan the two
individualmethods.3 The Bayesian approach is appliedbecause it is
easier to determine the con� dence intervals of the identity of faults
than the maximum likelihood approach.4 It also automatically pe-
nalizes highly complex models and, therefore, is able to select an
optimal model without applying independentmethods such as cross
validation, as is the case for the maximum likelihood approach.

The implementation of neural networks may be classi� ed as a
nondeterministicoptimizationproblem.This is becausewhenneural
networks are implemented, only the data are required instead of
deterministic mathematical relations. The optimization nature of
neural networks causes a problem of not � nding a global optimum
solution, especially if the number of parameters that indicate the
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identity of faults is high. To avoid the high incidence of � nding a
local optimum solution, it is often desirable to reduce the numberof
design variables. A method implemented to achieve this objective
is the method of substructuring

Each of the 10 cylinders used in this study is divided into three
substructures. Faults are located within these three substructures.
The parameters corresponding to each substructure form a vector
space, also known as the identity of fault, and this information is
de� ned as the substructure space. The information from the FRFs
and modal properties are transformed into substructurespace using
the weighted average of the two independentneural networks. This
approach performs fault identi� cation by using changes in vibra-
tion data resulting from the presence of faults, despite the presence
of other changes such as those due to uncertainties in measured
data because of a variation in physical properties of a population
of cylinders, uncertain measurement positions, changes in support
conditions, etc.

II. Theoretical Formulation
In this section, substructuringof modal and frequency equations

is introduced. Any elastic structure may be expressed in terms of
mass, damping, and stiffness matrices in time domain by

[M]fx.t/g C [C]fx.t/g C [K ]fx.t/g D f f .t/g (1)

Equation (1) can be transformed into frequency domain to give

f¡!2[M ] C i![C] C [K ]gfx.!/g D f f .!/g (2)

A. FRF Substructuring

Suppose we are interested in locating damage in either substruc-
ture 1, 2, or 3. Then Eq. (2) may be partitioned into three superele-
ments, as follows:0
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Because displacements fxg and force f f g are not used directly, the
force is assumed white, hence, f f g has a unit force magnitude at all
frequencies,and the displacement is replaced by the FRFs. If any of
the substructureshas a fault, this would be re� ected by changes in
FRFs of the three substructures.By comparing the relative changes
of the FRFs of these three substructures due to faults, one may be
able to identify faults.

The implicit relationshipbetweenphysicalpropertiesof the struc-
ture, for example, mass and stiffness matrices, and the FRFs will
be used to identify faults in structures. Suf� cient data of the modal
energies extracted from FRFs ´ and their corresponding identities
of fault y1 will be obtained from experiment, and a functionalmap-
ping between the two will be quanti� ed using a neural network by
the following equation:

y1 D h.´/ (4)

B. Modal Property Substructuring

Equation (2) may also be transformedinto modal domain to form
an eigenvalue equation for the nth mode, which may be written in
the substructure domain as follows:0
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If any of the substructures has a fault, this would be re� ected by
changes in f!ng and fÁng of the three substructures.By comparing

the relative changes of the modal properties of these three substruc-
tures as a result of fault, one may be able to deduce the presenceand
the location of faults. Similarly, a functional mapping between the
identityof fault y2 and the modal propertiesÂ may be quanti� ed by
the following equation:

y2 D f .Â/ (6)

In this sectionit is demonstratedhowthemethodof substructuring
can be used to reduce the order of the problem of fault identi� cation
from several thousandsubstructuresto three (in this study three was
chosen arbitrarily). Substructuring may be applied as a � rst step
in fault diagnostics by pointing to a larger area before localized
methods such as acoustics methods are applied.

C. Neural Networks

In this study,neuralnetworksare viewed as parameterizedgraphs
that make probabilistic assumptions about the data. Learning algo-
rithms are viewed as methods for � nding parameter values that look
probable in light of the data. Learning processes occur by train-
ing the network througheither supervisedor unsupervisedlearning.
Unsupervised learning is used when only the input data are avail-
able. Supervised learning is used when the input and the output are
available and neural networks are used to approximate the func-
tional mapping between the two. In this study, supervised learning
is applied.

There are several types of neural network architectures, namely,
multilayerperception(MLP)and radialbasis function.4 In this study,
the MLP is chosenbecauseit providesa complexnonlinearmapping
between the input and the output.

A schematic illustration of the MLP is given in Fig. 1. This net-
work architecture contains hidden units and output units. The bias
parametersin the � rst layerare shown as weightsfroman extra input
having a � xed value of x0 D 1. The bias parameters in the second
layer are shown as weights from an extra hidden unit, with activa-
tion � xed at z0 D 1. The model in Fig. 1 is able to take into account
the intrinsic dimensionality of the data. Models of this form can
approximate any continuous function to an arbitrary accuracy if the
number of hidden units M is suf� ciently large. Considering several
layers expands the MLP.

In this study, the output units represent the identity of damage
whereas the input units represent the parameters from the FRFs or

Fig. 1 Feedforward network having two layers of adaptive weights.
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the modal properties.The nonlinearmathematicalrelationthat maps
the input x to the output y may be written as

yk .Â/ D
MX

j D 1

wk j f

Á
dX

i D 1

wk j xi C w j0

!
C wk0 (7)

The function f . ¢ / implemented is sigmoid and is de� ned as

f .v/ D 1=.1 C e¡v / (8)

In the maximum likelihoodapproach,the weights (wi ) and biases
(with subscripts 0 in Fig. 1) in the hidden layers are varied until
the error between the network prediction and the output from the
trainingdata is minimized.Optimizationroutines,such as the scaled
conjugate gradient method, are utilized for training. The i th error
between the network prediction and the output from the training
data is de� ned as

errori D
ky ¡ h.x/i k

kh.x/i k
(9)

Here, k¢ k is the Euclidean norm of ¢ . The analysis employed in
this section does not take into account the randomness of the input
parameters.Thus, the MLP will be reformulatedusing the Bayesian
approach.

D. Input to Neural Network

The FRFs will be transformed into modal energies. These modal
energies are de� ned as the integrals of the real and imaginary com-
ponents of the FRFs over frequency ranges that bracket the natural
frequencies of the system. The identi� ed modal energies will be
transformed into the coordinate modal energy assurance criterion
(COMEAC). The COMEAC is a criterion that measures the corre-
lation between modal energies at each degree of freedom and the
median over the modal energies. The COMEAC is similar to the
coordinate modal assurance criterion COMAC5 and is de� ned as

COMEAC .i/ D

hPN
j D 1

j´med.i; j/´?
m .i; j/j

i2

PN

j D 1
j´med.i; j/j2

PN

j D 1
j´m.i; j/j2

(10)

Here, ´med is the median modal energy matrix taken over the pop-
ulation of undamaged structures, and ´m is the measured modal
energy matrix. Similarly, when modal energy matrices are perfectly
correlated, then the COMEAC for all degrees of freedom is 1. Oth-
erwise, two modal energy matrices that are totally uncorrelatedgive
the COMEAC for all degrees of freedom of 0. The COMEAC and
the corresponding identity of fault will be used to train the FRF
network.

Alternatively,modal analysismay be used to identifymodal prop-
erties (mode shapes and natural frequencies). The mode shapes are
transformed into the COMAC using Eq. (10) by substituting for ´
by mode shape vector. The natural frequencyand the COMAC will
be used to train the modal-propertynetwork.

To ensure that high-order input values do not dominate the train-
ing, the input parameters are normalized so that all of their values
lie in the interval[0, 1]. To achievethis normalization,the following
transformation is applied for the i th row of the input:
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E. Committee of Neural Networks

In this paper, a method illustrated schematically in Fig. 2 is ex-
tended to a probability framework and experimentally validated.
It has been shown before3 that a committee of networks that uses
both frequency and modal domain data gives results that are more
reliable than when the two networksare used individually.The com-
mittee has been found to give lower mean square errors and standard
deviation (thus giving solutions with a higher probability of being
correct) than the individualmethods.

Fig. 2 Illustration of committee of networks.

F. Bayesian Approach

If the input vector fxg, is random (it has a mean and variance),
because of the variation in physical properties of cylinders and
variation of measurements, then the identity of damage y will be
probabilistic. This will require that the weight space be assigned a
probability distribution representing the relative degrees of belief
in different values for the weight vector. This implies that the map-
ping function between input vector and output vector has a prob-
ability distribution. The weight space vector is initially assigned
some earlier distribution. Once the data, in this case the FRFs or
modal properties, and identities of the faults have been observed,
the weight vector can be transformed into posterior distribution us-
ing Bayes’ theorem. The posterior distribution can then be used to
evaluate the predictions of the trained network for data not used
during training.6;7 Bayes’ theorem may be written as follows:

p.w j D; x/ D
p.D j w; x/p.w j x/

p.D j x/
(12)

In Eq. (12), p.w j x/ is the probabilitydistributionfunctionof the
weight space in the absence of any data (also known as prior dis-
tribution) and D ´ .y1; : : : ; yN / is a matrix containing the identity
of damage data. The quantity p.w j D; x/ is the posterior proba-
bility distribution after the data have been seen and p.D j w; x/ is
the likelihood function. The MLP network trained by supervised
learning does not model the distribution of the input data. This x is
a conditioning variable that always appears on the right-hand side7

of the probabilities. For the remaining part of this study, x will be
omitted to simplify the notation.

1. Likelihood Function

The likelihood function for a normal distribution may be written
as

p.D j w/ D [1=Z D.¯/] exp.¡¯ ED/ (13)

The function Z D.¯/ is a normalization factor given by

Z D.¯/ D
Z

exp.¡¯ED/ dD D
Z

exp.¡¯ED/ dyi ; : : : ; dyN

(14)

If the identity of damage data is a smooth function with zero-mean
Gaussian noise, then the probability of observing the identity of
damage data D for a given input vector may be written as follows:

p.D j w/ D 1
Z D.¯/

exp

Á
¡¯

2

NX

n D 1

fh.xn; w/ ¡ yng2

!
(15)

The integral in Eq. (14) is the normalization factor that can be
calculated7 to give

Z D.¯/ D .2¼=¯/N=2 (16)
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2. Prior Probability Function of Weights

The prior probability function for weights may be written as

p.w j x/ D [1=ZW .®/] exp.¡®EW / (17)

The function ZW .®/ is a normalization factor given by

ZW .®/ D
Z

exp.¡®EW / dw (18)

The probability of vector w may be written as
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The integral in Eq. (18)gives the same formof expressionas Eq. (16)
and is as follows:

ZW .®/ D .2¼=®/W=2 (20)

3. Posterior Distribution of Weight Vector

The distributionof the weights p.D=w/ after the data have been
seen is calculatedby substitutingEqs. (15) and (19) into Eq. (12) to
give
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Z s
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where

Zs.®; ¯/ D
Z

exp.¡¯ED ¡ ®EW / dw (22)

ED and EW are obtained from Eqs. (15) and (19). The optimal
weight corresponds to the maximum of the posterior distribution.

4. Distribution of Network Outputs

The application of the Bayesian approach to neural networks re-
sultswith theweightvectorthathas themean andstandarddeviation.
As a result, the output parameters will have a probability distribu-
tion. By the use of the rules of probability, the distribution of the
outputs y for a given input vector x may be written in the following
form:

p.y j x; D/ D
Z

p.y j x; w/p.w j D/ dw (23)

G. Monte Carlo Methods

In this section,Monte Carlo methods will be employedto � nd the
distribution of the weight vectors and, subsequently, of the output
parameters. The integral in Eq. (23) may be written as follows:

I D p.y j x; D/ D
Z

F.w/p.w j D/ dw (24)

Equation 24 may be approximated as follows:

I »D
1
L

LX

i D 1

F.wi / (25)

In Eq. (25), a sample weight vector fwi g is generated from the
distribution p.w j D/. Because it is relatively dif� cult to generate
the weight vector with a requireddistribution,a simpler distribution
q.w/ will be considered, making Eq. (25)
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q.w/ dw »D
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To generate the weight vectors representative of the distribution
p.w; D/, we search through the weight space to � nd regions where
p.w j D/ is suf� ciently large. This will be achieved employing a
techniquecalled the Markov chainMonte Carlo7 method.This tech-

nique considers sequencesof vectors where each successive vector
depends on the preceding vector plus a random component. This
can be written as follows:

wnew D wold C " (27)

InEq. (27), " is somesmall randomvectorgeneratedfroma spher-
ical Gaussian distribution with small variance. To ensure that this
techniquesamples at regionswhere p.w j D/ is high, the Metropolis
et al. algorithm8 is employed by using the following criterion:

if p.wnew j D/ > p.wold j D/ accept

if p.wnew j D/ < p.wold j D/

accept with probability

p.wnew j D/

p.wold j D/
(28)

When steps are generated it is ensured that the probability of
generating a candidate vector w2 is the same as the probability of
generating the current vector w1 . The main shortcoming with the
Metropolis et al. technique8 is that it requires that the distribution
be uncorrelated. This is not the case when implementing neural
networks. This problem is solved by taking into account the gra-
dient of p.w j D/ and using it to determine the direction, which
results with higher posteriorprobability.For neural networks,back-
propagationis implemented to calculate the gradient.To ensure that
the gradient information corresponds to a required distribution,hy-
brid Monte Carlo simulation9 is used. To ensure that the algorithm
does not spend a long time in the vicinity of poor region of local
maximum probability, a simulated annealing technique10 is used.
The Metropolis et al. algorithm8 may, thus, be modi� ed to give

if p.wnew j D/ > p.wold j D/ accept

if p.wnew j D/ < p.wold j D/

accept with probability

expf [ p.wnew j D/]¡ [p.wold j D/]=T g (29)

For temperature T D 1 the desired distribution is recovered. For
T À 1 the system can explore weight space more freely and can
escape from the minimum local error function. By using this tech-
nique, the uncertainty of the output may be assessed.

The committee procedure explained in Sec. II.D. is adapted to
the Bayesian framework by generating I1 and I2 [in Eq. (26)], rep-
resenting the distribution of the identity of faults for a given modal
propertiesand FRFs, respectively.The overall distributionwill then
be evaluated by calculating the weighted summation of I1 and I2.

III. Experimental Example
In this sectionan impulsehammer test is performedon each of the

10 steel seam-weldedcylindricalshells (1:75 § 0:02-mm thickness,
101:86 § 0:29-mm diam., and height of 101:50 § 0:20 mm). The
reason why cylinders are chosen is that many aircraft components
have cylindricalshapes, for example, fuselage, casing of the engine,
nacelle,etc. These cylindersare rested on a bubblewrap, to simulate
a free–free environment(see Fig. 3). The cylindersare excitedusing
a modal hammer with a sensitivityof 4 pC/N, a head of mass 6.6 g,
and a cutoff frequencyof 3.64 kHz. The response is measured using
anaccelerometerwith a sensitivityof 2.6 pC/ms¡2, which hasa mass
of 19.8 g. Conventionalsignal processingproceduresare applied to
covert the time domain impulse history and response data into the
frequencydomain.The excitationand responsedata in the frequency
domain are utilized to calculate the FRFs. From the FRFs, modal
energies are extracted.

Each cylinder is divided into three substructures, and 12-mm-
diam holes are drilled into each substructure(see Fig. 3). For exam-
ple, for one cylinder, the � rst type of damage is a zero-faultscenario,
and its identity is [0 0 0]. The second type of damage is a one-fault
scenario, and if it is located in substructure 1, then its identity is
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Fig. 3 Cylindrical shell of 1.75-mm thickness.

[1 0 0]. The third type of damage is a two-fault scenario, and if the
faults are located in substructures 1 and 2, then the identity of this
case is [1 1 0]. The � nal type of damage is a three-fault scenario,
and the identity of this case is [1 1 1]. For each damage case, mea-
surementsare takenby measuringtheaccelerationat a � xed position
and roving the impulse position. One cylinder gives 4 damage sce-
narios and 12 sets of measurements (a factor of 3 for repeatability).
The total number of data collected is 120. From the 100 measured
data, an additional 100 are generated by adding 5% random noise
to the measured data.

The structureis vibratedat 19 different locations(see Fig. 3), 9 on
the upper ring of thecylinderand 10on the lower ring of thecylinder.
Each measurement is taken three times to quantify the repeatability
of the measurements. Some of the problems that are encountered
during impulse testing include the dif� culty in exciting the structure
at an exact the position (especially for an ensemble of structures)
and that the direction of the hammer cannot be accurately repeated.

Adding and subtracting 6 Hz from the resonance frequencies
identi� es the modal energy bandwidth. From the identi� ed modal
energies the COMEAC values are calculated. In calculating the
COMEAC, natural frequencies below 1500 Hz are used. These
COMEAC values are used to train the FRF neural network. This
network has 19 input parameters, 11 hidden units, and 3 output
units.

Furthermore, modal analysis is utilized to extract natural fre-
quencies, damping ratios, and the mode shapes. The mode shapes
are converted into COMAC. The 22 most reliable natural frequen-
cies and COMAC values are used to train the modal-propertyneural
network. This neural network has 22 input parameters, 13 hidden
units, and 3 output units.

On training the networks, the coef� cient of weight decay prior
to distribution ® and the coef� cient of data error distribution ¯ are
initializedto be 0.001 and 100, respectively.The numberof samples
retained when hybrid Monte Carlo is employed is 1000. The step
size for each trajectoryis 0.002.Fromthedatameasured,203setsare
chosen randomly and used to train the two networks.The remaining
17 sets of data are used to test the generalization of the networks.
The FRF network and the modal-propertynetwork are combined to
form a committee, which is shown in Fig. 2.

IV. Results and Discussion
The ensemble of 10 cylinders without faults is measured, and

the FRFs are shown in Fig. 4. Figure 4 shows that the repeatability
of the measurements is generally good at lower frequenciesand, as
expected,becomespoor at higher frequencies(above 1500Hz). The
presence of an accelerometer and the imperfection of the cylinders
destroy the axisymmetry of the structures.

The averageand the sample standard deviationof the elements of
the COMEAC vector (corresponding to measured points) for both
damaged and undamaged cylinders are shown in Table 1. Modal
energies for higher modes (above 1500 Hz) were deliberately left
out because they are generally noisy. From Table 1, the degree of
repeatabilityof the COMEAC for the undamagedstructures is high-
est in coordinate 3, then 7, 5, 19, 2, 14, 8, 11, 16, 18, 1, 17, 13, 9,
15, 4, 12, 6, and then 10. The repeatability of the COMEAC for
data from the damaged structures is highest in coordinate 7, then
18, 16, 5, 13, 2, 11, 19, 3, 8, 15, 4, 14, 9, 17, 6, 12, 10, and then 1.
From this set of data it is concludedthat the COMEAC parametersat
all measured positionsare reliable enough to be utilized for damage
identi� cation.This conclusionis reachedby comparingthe standard
deviations (see Table 1) of undamaged and damaged responses.

Table 2 shows the COMAC between the median mode shape for
undamaged cylinders and that of all of the cylinders. The natural
frequenciesof this system are 413, 427, 561, 577, 1165,1198,1408,
1439,1580, 2228, 2350,2519,2623,3228, 3387, 3586,3987,4309,
and 4818 Hz. The average and the sample standard deviation of the
elements of the COMAC vector (corresponding to a measurement

Table 1 COMEAC between the median modal energy for
undamaged cylinders and that of all of the cylindersa

Average Standard Average Standard
Coordinate (COMEAC) deviation ¾ , (COMEAC) deviation ¾ ,
number undamaged undamaged damaged damaged

1 0.9370 0.0371 0.9141 0.1077
2 0.9807 0.0127 0.9849 0.0196
3 0.9824 0.0111 0.9779 0.0279
4 0.9312 0.0627 0.9645 0.0481
5 0.9828 0.0118 0.9846 0.0189
6 0.8587 0.0955 0.9003 0.0705
7 0.9856 0.0117 0.9897 0.0127
8 0.9691 0.0174 0.9644 0.0325
9 0.9557 0.0467 0.9643 0.0641
10 0.8947 0.1049 0.9427 0.0910
11 0.9695 0.0181 0.9804 0.0210
12 0.8792 0.0651 0.8968 0.0735
13 0.9592 0.0378 0.9841 0.0190
14 0.9712 0.0130 0.9667 0.0558
15 0.9277 0.0472 0.9677 0.0329
16 0.9685 0.0246 0.9804 0.0188
17 0.9055 0.0371 0.9021 0.0699
18 0.9658 0.0330 0.9848 0.0184
19 0.9710 0.0118 0.9672 0.0261

aFrequency bandwidthD 12 Hz.

Table 2 COMAC between the median mode shape for
undamaged cylinders and that of all of the cylinders

Average Standard Average Standard
Coordinate (COMAC) deviation ¾ , (COMAC) deviation ¾ ,
number undamaged undamaged damaged damaged

1 0.9044 0.0376 0.8546 0.1119
2 0.9191 0.1048 0.9224 0.1010
3 0.8905 0.0921 0.8938 0.1009
4 0.8662 0.0886 0.8287 0.1464
5 0.9188 0.0933 0.9304 0.0744
6 0.7488 0.1660 0.7451 0.1655
7 0.8799 0.1039 0.8751 0.1090
8 0.9419 0.0862 0.9274 0.0784
9 0.8527 0.1646 0.8829 0.0871
10 0.8560 0.1192 0.8870 0.0717
11 0.9346 0.0645 0.9464 0.0277
12 0.8655 0.0662 0.8538 0.0897
13 0.9434 0.0512 0.9335 0.0250
14 0.9591 0.0170 0.9487 0.0261
15 0.9154 0.0576 0.8836 0.0566
16 0.9610 0.0260 0.9585 0.0237
17 0.8880 0.0554 0.8139 0.0730
18 0.9471 0.0256 0.9371 0.0293
19 0.9352 0.1303 0.9484 0.0278
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Table 3 Generalization of the FRF neural networka and con� dence intervals

Fault Exact Exact Exact Identi� ed Identi� ed Identi� ed
case substructure 1 substructure 2 substructure 3 substructure 1 substructure 2 substructure 3

1 0 0 0 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.01)
2 0 0 0 0.00 (0.00–0.01) 0.38 (0.00–0.84) 0.00 (0.00–0.01)
3 0 0 0 0.01 (0.00–0.09) 0.00 (0.00–0.01) 0.00 (0.00–0.01)
4 0 0 0 0.99 (0.99–1.00) 0.00 (0.00–0.01) 0.00 (0.00–0.01)
5 0 1 0 0.00 (0.00–0.01) 0.23 (0.00–0.58) 0.89 (0.59–1.00)
6 1 0 0 0.99 (0.98–1.00) 0.00 (0.00–0.01) 0.00 (0.00–0.00)
7 1 0 0 0.57 (0.10–1.00) 0.00 (0.00–0.01) 0.00 (0.00–0.00)
8 0 1 0 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.15 (0.00–0.39)
9 0 0 1 0.00 (0.00–0.01) 0.01 (0.01–0.02) 0.99 (0.99–1.00)
10 0 1 0 0.19 (0.00–0.52) 0.99 (0.98–1.00) 0.01 (0.00–0.07)
11 0 1 1 0.00 (0.00–0.01) 0.86 (0.58–1.00) 0.68 (0.24–1.00)
12 1 1 0 0.99 (0.98–1.00) 0.97 (0.95–1.00) 0.00 (0.00–0.00)
13 1 1 0 0.99 (0.98–1.00) 0.99 (0.98–1.00) 0.04 (0.00–0.15)
14 0 1 1 0.81 (0.49–1.00) 0.99 (0.99–1.00) 0.99 (0.98–1.00)
15 1 1 1 0.97 (0.85–1.00) 0.01 (0.00–0.10) 0.99 (0.98–1.00)
16 1 1 1 0.99 (0.98–1.00) 0.56 (0.12–1.00) 0.99 (0.98–1.00)
17 1 1 1 0.99 (0.98–1.00) 0.99 (0.98–1.00) 0.99 (0.98–1.00)

aBandwidthD 12 Hz.

Fig. 4 Measured frequency response function of a population of undamaged cylinders.

coordinate) for both damaged and undamaged cylinders are shown
in Table 2. These COMAC values are obtained by comparing the
median mode shape matrices of all undamaged cases and that from
each fault case. In calculating the COMAC, the mode shapes from
modes 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, and 17 are used.The
repeatabilityof theCOMAC for data from the undamagedstructures
is highest in coordinate14, followed by 18, 16, 1, 13, 17, 15, 11, 12,
8, 4, 3, 5, 7, 2, 10, 19,9, and then 6. The repeatabilityof the COMAC
for data from the damaged structures is highest in coordinate 16,
then 13, 14, 11, 19, 18, 15, 10, 17, 5, 8, 9, 12, 3, 2, 7, 1, 4, and
then 6. From this set of data it is concluded that the COMAC at
coordinates, that is, positions of impulse, 1, 3, 4, 7, 12, 14, 17, and
18 are reliable enough to be utilized for fault identi� cation. This
conclusion is reached by comparing the standard deviations (see
Table 2) of undamaged and damaged response.

The results of the generalization of the FRF neural network and
modal-propertynetwork are shown in Tables 3 and 4, respectively.
The CPU time taken to train the FRF and modal-propertynetworks
on a Pentium 200 MHz processor is 133.2 and 140.9 min, respec-
tively. The results of the committee procedure are shown in Fig. 5

and Table 5. Figure 5 shows the mean square error vs the weighting
function of the modal-property network. Figure 5 indicates that an
optimalcombinationof the two networksgivesa networkwith lower
mean square errors than the individual methods. This observation
has been mathematically proven before.3 Figure 5 also shows that
the optimal committee of networks (the lowest mean square error)
is obtained by giving 30% weight to the modal-property network
and 70% to the FRF network.Some of the reasonswhy the FRF net-
work is found to be more accurate than the modal-propertynetwork
are 1) the errors introduced when extracting modal properties from
FRFs and 2) that the modal-property network is bigger (22 input
units) than the FRF network (19 input units). Figure 6 shows that
giving 50% weight to modal-propertynetwork and 50% to the FRF
network offers the lowest standard deviation.

The generalizationresults are shown in Tables 3–5. For the zero-
fault case 1, the three procedures give the correct solution. In the
second case, the committee and the FRF network give the correct
identity of fault, whereas the modal-propertynetwork approach in-
correctly identi� es the presence of a fault in substructure1. In fault
case 3, the three approaches correctly identify the faults. However,
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Table 4 Generalization of the modal-property neural network and con� dence intervals

Fault Exact Exact Exact Identi� ed Identi� ed Identi� ed
case substructure 1 substructure 2 substructure 3 substructure 1 substructure 2 substructure 3

1 0 0 0 0.05 (0.00–0.23) 0.01 (0.00–0.05) 0.00 (0.00–0.01)
2 0 0 0 0.72 (0.32–1.00) 0.27 (0.00–0.65) 0.00 (0.00–0.01)
3 0 0 0 0.00 (0.00–0.01) 0.44 (0.00–0.91) 0.07 (0.00–0.30)
4 0 0 0 0.00 (0.00–0.01) 0.18 (0.00–0.50) 0.00 (0.00–0.01)
5 0 1 0 0.72 (0.30–1.00) 0.00 (0.00–0.01) 0.00 (0.00–0.01)
6 1 0 0 0.85 (0.53–1.00) 0.92 (0.68–1.00) 0.36 (0.08–0.79)
7 1 0 0 0.96 (0.82–1.00) 0.85 (0.53–1.00) 0.08 (0.00–0.32)
8 0 1 0 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.01)
9 0 0 1 0.08 (0.00–0.32) 0.00 (0.00–0.01) 0.73 (0.32–1.00)
10 0 1 0 0.95 (0.78–1.00) 0.99 (0.98–1.00) 0.78 (0.40–1.00)
11 0 1 1 0.00 (0.00–0.01) 0.98 (0.87–1.00) 0.99 (0.98–1.00)
12 1 1 0 0.42 (0.00–0.89) 0.25 (0.00–0.63) 0.27 (0.00–0.67)
13 1 1 0 0.55 (0.06–1.00) 0.36 (0.00–0.81) 0.73 (0.33–1.00)
14 0 1 1 0.02 (0.00–0.15) 0.99 (0.98–1.00) 0.99 (0.98–1.00)
15 1 1 1 0.99 (0.98–1.00) 0.99 (0.99–1.00) 0.99 (0.98–1.00)
16 1 1 1 0.99 (0.98–1.00) 0.91 (0.67–1.00) 0.75 (0.37–1.00)
17 1 1 1 0.99 (0.94–1.00) 0.99 (0.97–1.00) 0.36 (0.00–0.84)

Table 5 Generalization of the committee neural network and con� dence intervals

Fault Exact Exact Exact Identi� ed Identi� ed Identi� ed
case substructure 1 substructure 2 substructure 3 substructure 1 substructure 2 substructure 3

1 0 0 0 0.00 (0.00–0.07) 0.00 (0.00–0.02) 0.00 (0.00–0.01)
2 0 0 0 0.22 (0.10–0.34) 0.35 (0.01–0.70) 0.00 (0.00–0.01)
3 0 0 0 0.07 (0.00–0.07) 0.13 (0.01–0.27) 0.02 (0.00–0.09)
4 0 0 0 0.70 (0.10–0.81) 0.06 (0.00–0.15) 0.00 (0.00–0.01)
5 0 1 0 0.22 (0.09–0.34) 0.16 (0.00–0.41) 0.62 (0.41–0.83)
6 1 0 0 0.96 (0.86–1.00) 0.28 (0.20–0.35) 0.11 (0.00–0.24)
7 1 0 0 0.69 (0.36–1.00) 0.26 (0.16–0.35) 0.02 (0.00–0.10)
8 0 1 0 0.02 (0.00–0.01) 0.00 (0.00–0.01) 0.10 (0.00–0.27)
9 0 0 1 0.02 (0.00–0.09) 0.01 (0.0–0.01) 0.92 (0.79–1.00)
10 0 1 0 0.42 (0.19–0.66) 0.99 (0.98–1.00) 0.24 (0.11–0.37)
11 0 1 1 0.00 (0.00–0.01) 0.90 (0.70–1.00) 0.78 (0.47–1.00)
12 1 1 0 0.83 (0.69–0.96) 0.77 (0.66–0.89) 0.08 (0.00–0.20)
13 1 1 0 0.86 (0.72–1.00) 0.81 (0.67–0.94) 0.25 (0.09–0.41)
14 0 1 1 0.57 (0.34–0.80) 0.99 (0.98–1.00) 0.99 (0.98–1.00)
15 1 1 1 0.98 (0.90–1.00) 0.31 (0.25–0.37) 0.99 (0.98–1.00)
16 1 1 1 0.99 (0.98–1.00) 0.67 (0.33–1.00) 0.92 (0.81–1.00)
17 1 1 1 0.99 (0.98–1.00) 0.99 (0.98–1.00) 0.81 (0.67–0.95)

Fig. 5 Sum of square of errors vs weighting function of the modal-property network.
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Fig. 6 Standard deviation vs weighting function.

note that the modal-property network gives wider con� dence in-
tervals than the two other approaches. In fault case 4, the modal-
propertynetwork successfullyidenti� es this fault whereas the other
two approaches fail to do so. However, if con� dence intervals are
taken into account, the committee approach gives an indecisive so-
lution for substructure 1.

For one-fault case 5, the three networks fail to correctly identify
the presence of faults in substructure 2. For fault case 6, the com-
mittee and the FRF network correctly identify the one-fault-case,
whereas the modal-property network identi� es this fault case as a
two-fault case. In fault case 7, the committee gives the best pre-
diction, followed by the FRF network, whereas the modal-property
network incorrectly identi� es this one-fault case as a two-fault sce-
nario. In fault case 8, the three approaches fail to identify the pres-
ence of fault in substructure 2. The con� dence intervals are close
to zero, implying that there are suf� cient data to model this case.
The reason for this failure is that the data set for this fault case
gives con� icting information. In other words, the input data set
(COFEAC, natural frequencies, and COMAC) for this fault case
over an ensemble of cylinders has a higher variation than for other
fault cases. The modal-property network identi� es this one-fault
case as a two-fault case. The committee gives inconclusive results,
which is more informative than the two individual approaches.
In fault cases 9 and 10 the three networks correctly identify the
one-fault scenarios, with faults located in substructures 3 and 2,
respectively.

In fault case 11, the three networks correctly identify this two-
fault scenario. The modal-property network gives the best results,
followed by the committee approach. In fault case 12, the FRF net-
work correctly identi� es this two-fault scenario, followed by the
committee approach, whereas the modal-property network fails to
identify the presence of faults in substructure 2. In fault case 13,
the FRF network and the committee approach correctly identify the
fault case, whereas the modal-property network fails to locate the
fault in substructure 2 (it also gives a wider con� dence interval). In
fault case 14, the modal-property network correctly identi� es the
two-fault scenario. The committee approach and the FRF network
incorrectly identify the presence of faults in substructure 1. How-
ever, if con� dence intervals are taken into account, the committee

approach is indecisive about whether a fault is present in substruc-
ture 1.

For fault case 15, the modal-property network gives the correct
identityof the three-faultscenario.The committee and the FRF net-
work fail to identify the presenceof faults in substructure2. For fault
case 16, the modal-propertynetworkgives the best results, followed
by the committee approach. The FRF approach experiences some
dif� culty in identifying the presence of faults in substructure2. For
fault case 17, the FRF network gives the best results, followed by
the committee approach.The modal-propertynetwork fails to locate
the presenceof faults in substructure3 (for this substructure it gives
a wide con� dence interval).

V. Conclusion
A committeeof two Bayesian-formulatedneuralnetworks,which

are trained using modal energies and modal properties, is success-
fully implemented to perform probabilistic fault identi� cation in a
population of cylindrical shells. The results show that the commit-
tee gives more accurate identities of faults (lower sum of squares
of errors and standard deviations) and their respective con� dence
intervals than individualnetworks.Modal energies and modal prop-
erties are found to be suf� ciently sensitive to be used for fault iden-
ti� cation. The FRF network is found to be more accurate than the
modal-property network. The committee is found to be a reliable
alternativefor fault identi� cation if there is no prior knowledgeas to
which method is better. The modal-propertynetwork requires more
computational time to train than the FRF network.
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